
International Journal of Solids and Structures 40 (2003) 5335–5352

www.elsevier.com/locate/ijsolstr
Three-dimensional exact analysis of a simply
supported functionally gradient piezoelectric plate

Z. Zhong *, E.T. Shang

Key Laboratory of Solid Mechanics of MOE, Department of Engineering Mechanics and Technology, Tongji University,

1239 Siping Road, Shanghai 200092, PR China

Received 6 November 2002; received in revised form 23 April 2003
Abstract

An exact three-dimensional analysis is presented for a functionally gradient piezoelectric material rectangular plate

that is simply supported and grounded along its four edges. The state equations of the functionally gradient piezo-

electric material are developed based on the state space approach. Assuming that the mechanical and electric properties

of the material have the same exponent-law dependence on the thickness-coordinate, we obtain an exact three-

dimensional solution of the coupling electroelastic fields in the plate under mechanical, and electric loading on the upper

and lower surfaces of the plate. The influences of the different functionally gradient material properties on the structural

response of the plate to the mechanical and electric stimuli are then studied through examples.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials have been widely used as actuators and sensors in smart and adaptive systems due

to their intrinsic coupling of mechanical and electric fields (Gandhi and Thompson, 1992; Rao and Sunar,

1994). In order to achieve large deformation, piezoelectric actuators are often constructed as bimorph or

stacked form, by bonding together two piezoelectric ceramic sheets in strip or plate forms. While these
designs can provide large displacement, they have great disadvantages. The bonding of two different

piezoelectric materials or identical piezoelectric materials with different poling directions will cause severe

interfacial stress concentration, and trigger the initiation and propagation of micro-cracks near the inter-

face which may lead to failure of the devices. Such drawbacks reduce the reliability and life span of

piezoelectric devices and limit their applications.
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In order to overcome the drawbacks of conventional piezoelectric bimorphs, a new kind of piezoelectric

materials, named functionally gradient piezoelectric materials (FGPMs), has been developed (Zhu and

Meng, 1995; Wu et al., 1996; Shelley et al., 1999). FGPM is a kind of piezoelectric material with material

composition and properties varying continuously along certain directions. The piezoelectric devices can be
entirely made of FGPM or use FGPM as a transit interlayer between different piezoelectric materials. The

advantage of this new kind of materials is that no discernible internal boundaries exist and failures from

interfacial stress concentrations developed in conventional bimorphs can be avoided. FGPM actuators can

thus produce large displacements while minimizing the internal stress concentrations, which will greatly

improve the reliability and life of piezoelectric actuators. Nowadays, advancement of modern materials

processing technology has enabled the fabrication of materials with arbitrary compositional gradient in a

controlled fashion. The relationship between the material compositional gradient and the electromechanical

responses of FGPM structures is very important in the design of FGPM devices. This research subject is so
new that only a few results can be found in the literature. Most of the available results on the structural

analysis of FGPM plate were based on a laminated structure scheme by which the FGPM plate was ap-

proximately modeled as a laminated structure. For example, this scheme was employed by Liu and Tani

(1994) to study the wave propagation in FGPM plates, by Chen and Ding (2002) to analyze the free

vibration of FGPM rectangular plates. Other related works include: Lim and He (2001) obtained an exact

solution of a compositionally graded piezoelectric layer under uniform stretch, bending and twisting;

Reddy and Cheng (2001) obtained a three-dimensional solution of smart functionally gradient plate; Li and

Weng (2002a,b), Hu et al. (2002), Jin and Zhong (2002) studied the problems of an antiplane crack in
functionally gradient piezoelectric materials.

The objective of this work is to present an exact solution of a simply supported functionally gradient

piezoelectric rectangular plate based on three-dimensional electroelasticity theory. The obtained exact

solution could serve as a benchmark result to assess other approximate methodologies or as a basis for

establishing simplified FGPM plate theories.
2. Formulation

Consider a FGPM rectangular plate of uniform thickness h, as shown in Fig. 1. Introduce a Cartesian
coordinate system fxig (i ¼ 1; 2; 3) such that the bottom and top surfaces of the undeformed plate lie in the
plane x3 ¼ 0 and x3 ¼ h. The lengths of the edges of the plate in x1- and x2-direction are respectively denoted
by a and b. Throughout the paper, the Einsteinian summation convention over repeated indices of tensor
components is used, with Latin indices ranging from 1 to 3 while Greek indices over 1 and 2.

In the absence of body forces and electric charge density, the field equations of elastic equilibrium and

Gauss� law of electrostatics are (Tiersten, 1969; Maugin, 1988)
rij;j ¼ 0 Di;i ¼ 0 ð1Þ
Fig. 1. A schematic of the rectangular plate.
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where rij is the stress tensor, Di the electric displacement vector, a comma denotes partial differentiation

with respect to the coordinate xi.
The strain eij and the electric field Ei are related to the elastic displacements ui and the electric potential /

through the following relations:
eij ¼ 1
2
ðui;j þ uj;iÞ Ei ¼ �/;i ð2Þ
The constitutive relations of FGPM are
rij ¼ cijklekl � ekijEk Di ¼ eiklekl þ kikEk ð3Þ

where cijkl, eikl, kik are the elastic stiffness tensor, the piezoelectric tensor and the dielectric tensor, with the
interchange symmetries cijkl ¼ cjikl ¼ cijlk ¼ cklij, ekij ¼ ekji, kik ¼ kki. Unlike in a homogeneous piezoelectric

material, cijkl, eikl, kik are now functions of the coordinates xi (i ¼ 1; 2; 3). In most real cases, the material
property parameters are varied continuously only in one direction. In the present study, we consider the

material properties having the following exponential distributions
cijkl ¼ c0ijkl e
aðx3=hÞ eikl ¼ e0ikl e

aðx3=hÞ kik ¼ k0ik e
aðx3=hÞ ð4Þ
where c0ijkl, e
0
ikl and k0ik are the values at the plane x3 ¼ 0, a is the material property gradient index which can

be determined by the values of the material properties at the planes, x3 ¼ 0 and x3 ¼ h, i.e.
a ¼ ln chijkl � ln c0ijkl ¼ ln ehikl � ln e0ikl ¼ ln kh
ik � ln k0ik ð5Þ
The assumption that the material properties vary exponentially with spatial position is not only simple for

mathematical treatment, it also provides some essential features of functionally gradient materials.

Therefore, it was employed by many researchers to model the elastic or thermoelastic behaviors of func-
tionally gradient material (e.g., Erdogan, 1985; Delale and Erdogan, 1988; Noda and Jin, 1993; Gu and

Asaro, 1997; among others).

Next we will consider an orthotropic functionally gradient material, for which the nonzero components

of the elastic stiffness tensor, the piezoelectric tensor and the dielectric tensor are c1111, c2222, c3333, c1122, c1133,
c2233, c2323, c1313, c1212, e311, e322, e333, e113, e223, k11, k22, k33. Following the process of state space approach
used in piezoelectricity (Lee and Jiang, 1996; Ding et al., 1999; Cheng et al., 2000), the following relations in

matrix form can be obtained from (1)–(3):
@3
P
C

� �
¼ 0 A

B 0

� �
P
C

� �
ð6Þ

K
T

� �
¼ 0 C

D 0

� �
P
C

� �
ð7Þ
where @i � o=oxi (i ¼ 1; 2; 3), and
P ¼ u1 u2 r33 D3½ 
T C ¼ r13 r23 u3 /½ 
T ð8Þ

K ¼ D1 D2½ 
T T ¼ r11 r22 r12½ 
T ð9Þ

The operator matrices A, B, C, D contain the in-plane differential operators @1 and @2, and depend on x3
only through the material moduli:
A ¼
c�11313 0 �@1 �k11@1
0 c�12323 �@2 �k12@2

�@1 �@2 0 0

�k11@1 �k12@2 0 k21@21 þ k22@22

2
664

3
775 ð10Þ
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B ¼

�k31@21 � c1212@22 k8@1@2 �k4@1 �k5@1

k8@1@2 �c1212@21 � k33@22 �k6@2 �k7@2

�k4@1 �k6@2 k0k33 k0e333

�k5@1 �k7@2 k0e333 �k0c3333

2
66664

3
77775 ð11Þ

C ¼
k11 0 0 �k21@1

0 k12 0 �k22@2

" #
ð12Þ

D ¼
k31@1 k32@2 k4 k5

k32@1 k33@2 k6 k7

c1212@2 c1212@1 0 0

2
64

3
75 ð13Þ
where
k0 ¼
1

c3333k33 þ e2333
k11 ¼

e113
c1313

k12 ¼
e223
c2323

k21 ¼
e2113
c1313

þ k11 k22 ¼
e2223
c2323

þ k22

k31 ¼ c1111 � k0ðc21133k33 þ 2c1133e311e333 � e2311c3333Þ

k32 ¼ c1122 � k0ðc1133c2233k33 þ c1133e322e333 þ c2233e311e333 � c3333e311e322Þ

k33 ¼ c2222 � k0ðc22233k33 þ 2c2233e322e333 � e2322c3333Þ

k4 ¼ k0ðc1133k33 þ e311e333Þ k5 ¼ k0ðc1133e333 � c3333e311Þ

k6 ¼ k0ðc2233k33 þ e322e333Þ k7 ¼ k0ðc2233e333 � c3333e322Þ

k8 ¼ k4c2233 þ k5e322 � c1122 � c1212
For a rectangular plate that is simply supported and grounded on all four edges, the edge conditions are

given by
r11 ¼ u2 ¼ u3 ¼ / ¼ 0 at x1 ¼ 0 and a

r22 ¼ u1 ¼ u3 ¼ / ¼ 0 at x2 ¼ 0 and b
ð14Þ
Boundary conditions at the top and bottom surfaces are

at x3 ¼ 0 (bottom surface):

r13 ¼ X�ðx1; x2Þ r23 ¼ Y �ðx1; x2Þ r33 ¼ Z�ðx1; x2Þ

D3 ¼ D�ðx1; x2Þ ðor U ¼ U�ðx1; x2ÞÞ
ð15Þ
and at x3 ¼ h (top surface):
r13 ¼ Xþðx1; x2Þ r23 ¼ Y þðx1; x2Þ r33 ¼ Zþðx1; x2Þ

D3 ¼ Dþðx1; x2Þ ðor U ¼ Uþðx1; x2ÞÞ
ð16Þ
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3. Solution

The state variables that satisfy the boundary condition (14) can be assumed as
P ¼

u1
u2
r33
D3

2
6664

3
7775 ¼

X1
m¼1

X1
n¼1

Umnðx3Þ cos
mpx1
a

� 

sin

npx2
b

� 

Vmnðx3Þ sin

mpx1
a

� 

cos

npx2
b

� 

eaðx3=hÞZmnðx3Þ sin

mpx1
a

� 

sin

npx2
b

� 

eaðx3=hÞDmnðx3Þ sin

mpx1
a

� 

sin

npx2
b

� 


2
666666664

3
777777775

ð17Þ

C ¼

r13
r23
u3
/

2
6664

3
7775 ¼

X1
m¼1

X1
n¼1

eaðx3=hÞXmnðx3Þ cos
mpx1
a

� 

sin

npx2
b

� 

eaðx3=hÞYmnðx3Þ sin

mpx1
a

� 

cos

npx2
b

� 

Wmnðx3Þ sin

mpx1
a

� 

sin

npx2
b

� 

Umnðx3Þ sin

mpx1
a

� 

sin

npx2
b

� 


2
666666664

3
777777775

ð18Þ
Substituting (17) and (18) into (6), we obtain the following matrix equation
oMmn

ox3
¼ KmnMmn ð19Þ
where
Mmn ¼ Umn Vmn Zmn Dmn Xmn Ymn Wmn Umn½ 
T ð20Þ

and
Kmn ¼
Kmn
1 Kmn

3

Kmn
4 Kmn

2

� �
ð21Þ
with Kmn
1 , K

mn
2 , K

mn
3 and Kmn

4 being given as
Kmn
1 ¼

0 0 0 0

0 0 0 0

0 0 � a
h

0

0 0 0 � a
h

2
66666664

3
77777775

Kmn
2 ¼

� a
h

0 0 0

0 � a
h
0 0

0 0 0 0

0 0 0 0

2
66666664

3
77777775

Kmn
3 ¼

1

c01313
0 �mp

a
�k011

mp
a

0
1

c02323
� np

b
�k012

np
b

mp
a

np
b

0 0

k011
mp
a

k012
np
b

0 �k021
mp
a

� 
2
� k022

np
b

� 
2

2
6666666666664

3
7777777777775



5340 Z. Zhong, E.T. Shang / International Journal of Solids and Structures 40 (2003) 5335–5352
Kmn
4 ¼

k031
mp
a

� 
2
þ c01212

np
b

� 
2
�k08

mp
a

np
b

�k04
mp
a

�k05
mp
a

�k08
mp
a

np
b

c01212
mp
a

� 
2
þ k033

np
b

� 
2
�k06

np
b

�k07
np
b

k04
mp
a

k06
np
b

k033k0 e033k0

k05
mp
a

k07
np
b

e033k0 �c033k0

2
6666666664

3
7777777775

ð22Þ
with
k00 ¼
1

c03333k
0
33 þ ðe0333Þ

2
k011 ¼

e0113
c01313

k12 ¼
e0223
c02323

k021 ¼
e0113
� �2
c01313

þ k011 k022 ¼
e0223
� �2
c02323

þ k022

k031 ¼ c01111 � k00 ½ðc01133Þ
2k33 þ 2c01133e0311e0333 � ðe0311Þ

2c03333


k032 ¼ c01122 � k00ðc01133c02233k
0
33 þ c01133e

0
322e

0
333 þ c02233e

0
311e

0
333 � c03333e

0
311e

0
322Þ

k033 ¼ c02222 � k00bðc02233Þ
2k033 þ 2c02233e0322e0333 � ðe0322Þ

2c03333c

k04 ¼ k00ðc01133k
0
33 þ e0311e

0
333Þ k05 ¼ k00ðc01133e0333 � c03333e

0
311Þ

k06 ¼ k00ðc02233k
0
33 þ e0322e

0
333Þ k07 ¼ k00ðc02233e0333 � c03333e

0
322Þ

k08 ¼ k04c
0
2233 þ k05e

0
322 � c01122 � c01212
The solution to Eq. (19) can be written as (Gantmacher, 1960)
Mmnðx3Þ ¼ Tðx3ÞMmnð0Þ ð23Þ

where Tðx3Þ ¼ eKmnx3 is called a transfer matrix, which can be further expanded into a matrix polynomial

from the Cayley–Hamilton theorem, as follows:
Tðx3Þ ¼ eKmnx3 ¼
X7
p¼0

apðx3ÞKp
mn ð24Þ
Assuming that the 8 · 8 matrix Kmn takes distinct eigenvalues g1; . . . ; g8, which is valid for most cases of
anisotropic materials, we have
egix3 ¼
X7
p¼0

apðx3Þgp
i ði ¼ 1; . . . ; 8Þ ð25Þ
(25) forms a set of eight linear algebraic equations for eight unknown coefficients apðx3Þ, p ¼ 0; 1; . . . ; 7.
Once these coefficients are obtained, the transfer matrix Tðx3Þ can readily be determined from Eq. (24).
Then, from (23), we can get
MmnðhÞ ¼ TðhÞMmnð0Þ ð26Þ
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or
UmnðhÞ
VmnðhÞ
ZmnðhÞ
DmnðhÞ
XmnðhÞ
YmnðhÞ
WmnðhÞ
UmnðhÞ

2
66666666666666664

3
77777777777777775

¼

T11ðhÞ T12ðhÞ T13ðhÞ T14ðhÞ T15ðhÞ T16ðhÞ T17ðhÞ T18ðhÞ
T21ðhÞ T22ðhÞ T23ðhÞ T24ðhÞ T25ðhÞ T26ðhÞ T27ðhÞ T28ðhÞ
T31ðhÞ T32ðhÞ T33ðhÞ T34ðhÞ T35ðhÞ T36ðhÞ T37ðhÞ T38ðhÞ
T41ðhÞ T42ðhÞ T43ðhÞ T44ðhÞ T45ðhÞ T46ðhÞ T47ðhÞ T48ðhÞ
T51ðhÞ T52ðhÞ T53ðhÞ T54ðhÞ T55ðhÞ T56ðhÞ T57ðhÞ T58ðhÞ
T61ðhÞ T62ðhÞ T63ðhÞ T64ðhÞ T65ðhÞ T66ðhÞ T67ðhÞ T68ðhÞ
T71ðhÞ T72ðhÞ T73ðhÞ T74ðhÞ T75ðhÞ T76ðhÞ T77ðhÞ T78ðhÞ
T81ðhÞ T82ðhÞ T83ðhÞ T84ðhÞ T85ðhÞ T86ðhÞ T87ðhÞ T88ðhÞ

2
66666666666666664

3
77777777777777775

Umnð0Þ
Vmnð0Þ
Zmnð0Þ
Dmnð0Þ
Xmnð0Þ
Ymnð0Þ
Wmnð0Þ
Umnð0Þ

2
66666666666666664

3
77777777777777775

ð27Þ

e mechanical and electric loads on the top and bottom surfaces of the plate (see boundary conditions
Th

(15) and (16)) can be further expanded as
X�ðx1; x2Þ

Y �ðx1; x2Þ

Z�ðx1; x2Þ

D�ðx1; x2Þ

U�ðx1; x2Þ

2
666666664

3
777777775
¼

X1
m¼1

X1
n¼1

X�
mn cos

mpx1
a

� 

sin

npx2
b

� 


Y �
mn sin

mpx1
a

� 

cos

npx2
b

� 

Z�
mn sin

mpx1
a

� 

sin

npx2
b

� 

D�

mn sin
mpx1
a

� 

sin

npx2
b

� 


U�
mn sin

mpx1
a

� 

sin

npx2
b

� 


2
6666666666666664

3
7777777777777775

ð28Þ

Xþðx1; x2Þ
Y þðx1; x2Þ
Zþðx1; x2Þ
Dþðx1; x2Þ
Uþðx1; x2Þ

2
6666664

3
7777775
¼

X1
m¼1

X1
n¼1

Xþ
mn cos

mpx1
a

� 

sin

npx2
b

� 

Y þ
mn sin

mpx1
a

� 

cos

npx2
b

� 

Zþ
mn sin

mpx1
a

� 

sin

npx2
b

� 

Dþ

mn sin
mpx1
a

� 

sin

npx2
b

� 

Uþ

mn sin
mpx1
a

� 

sin

npx2
b

� 


2
6666666666664

3
7777777777775

ð29Þ
where 2 3
X�
mn

Y �
mn

Z�
mn

D�
mn

U�
mn

2
666664

3
777775 ¼ 4

ab

Z a

0

Z b

0

X�ðx1; x2Þ cos
mpx1
a

� 

sin

npx2
b

� 

dx1 dx2Z a

0

Z b

0

Y �ðx1; x2Þ sin
mpx1
a

� 

cos

npx2
b

� 

dx1 dx2Z a

0

Z b

0

Z�ðx1; x2Þ sin
mpx1
a

� 

sin

npx2
b

� 

dx1 dx2Z a

0

Z b

0

D�ðx1; x2Þ sin
mpx1
a

� 

sin

npx2
b

� 

dx1 dx2Z a

0

Z b

0

U�ðx1; x2Þ sin
mpx1
a

� 

sin

npx2
b

� 

dx1 dx2

666666666666666664

777777777777777775

ð30Þ
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Xþ
mn

Y þ
mn

Zþ
mn

Dþ
mn

Uþ
mn

2
6664

3
7775 ¼ 4

ab

Z a

0

Z b

0

Xþðx1; x2Þ cos
mpx1
a

� 

sin

npx2
b

� 

dx1 dx2Z a

0

Z b

0

Y þðx1; x2Þ sin
mpx1
a

� 

cos

npx2
b

� 

dx1 dx2Z a

0

Z b

0

Zþðx1; x2Þ sin
mpx1
a

� 

sin

npx2
b

� 

dx1 dx2Z a

0

Z b

0

Dþðx1; x2Þ sin
mpx1
a

� 

sin

npx2
b

� 

dx1 dx2Z a

0

Z b

0

U�ðx1; x2Þ sin
mpx1
a

� 

sin

npx2
b

� 

dx1 dx2

2
6666666666666664

3
7777777777777775

ð31Þ
Substituting (17) and (18) into boundary conditions (15) and (16), with (28) and (29) being considered,

we have
Xmnð0Þ ¼ X�
mn Ymnð0Þ ¼ Y �

mn Zmnð0Þ ¼ Z�
mn

Dmnð0Þ ¼ D�
mn ðor Umnð0Þ ¼ U�

mnÞ
ð32Þ

XmnðhÞ ¼ e�aXþ
mn YmnðhÞ ¼ e�aY þ

mn ZmnðhÞ ¼ e�aZþ
mn

DmnðhÞ ¼ e�aDþ
mn ðor UmnðhÞ ¼ Uþ

mnÞ
ð33Þ
Substituting (32) and (33) into (27), we can solve these eight algebraic equations for eight unknowns,

Umnð0Þ, Vmnð0Þ, Wmnð0Þ, Umnð0Þ, UmnðhÞ, VmnðhÞ, WmnðhÞ, UmnðhÞ. Hence, all the components ofMmnð0Þ are ob-
tained. Eqs. (17), (18) and (23) can then be used to calculate exactly the coupling electroelastic field in the plate.
4. Numerical examples

In this section numerical study of FGPM square plate (a ¼ b ¼ 1 m, h ¼ 0:1 m), which is simply sup-
ported and grounded on its four lateral edges, will be made based on the above exact solution. The material

chosen for the study is PZT-4 that has the material properties at x3 ¼ 0, as follows (Cheng et al., 2000):

c01111 ¼ c02222 ¼ 139 GPa; c03333 ¼ 115 GPa; c01122 ¼ 77:8 GPa; c01133 ¼ c02233 ¼ 74:3 GPa;
c02323 ¼ c03131 ¼ 25:6 GPa; c01212 ¼ 30:6 GPa; e0311 ¼ e0322 ¼ �5:2 C=m2; e0333 ¼ 15:1 C=m2;
e0113 ¼ e0223 ¼ 12:7 C=m2; k011 ¼ k022 ¼ 1:306� 104 pF=m; k033 ¼ 1:151� 104 pF=m
Numerical results are presented for four cases of sinusoidal loading for which only one term solution is

needed (m ¼ n ¼ 1). The four cases considered here are:

Case 1:
Zþ

Y þ

Zþ

Y þ
ðx1; x2Þ ¼ �Z0 sin
px1
a

� 

sin

px2
b

� 

ðZ0 ¼ 1 PaÞ

ðx1; x2Þ ¼ Xþðx1; x2Þ ¼ Z�ðx1; x2Þ ¼ Y �ðx1; x2Þ ¼ X�ðx1; x2Þ ¼ Dþðx1; x2Þ ¼ D�ðx1; x2Þ ¼ 0:
Case 2:
ðx1; x2Þ ¼ �Z0 sin
px1
a

� 

sin

px2
b

� 

ðZ0 ¼ 1 PaÞ

ðx1; x2Þ ¼ Xþðx1; x2Þ ¼ Z�ðx1; x2Þ ¼ Y �ðx1; x2Þ ¼ X�ðx1; x2Þ ¼ /þðx1; x2Þ ¼ /�ðx1; x2Þ ¼ 0



Fig. 2. Variation of physical quantities with coordinate x3 at a location (x1=a ¼ 1=4, x2=b ¼ 1=4) for case 1: (a) in-plane displacement u1
(m), (b) transverse displacement u3 (m), (c) electric potential / (V), (d) in-plane normal stress r11 (Pa), (e) in-plane shear stress r12 (Pa),
(f) out-of-plane shear stress r31 (Pa), (g) out-of-plane normal stress r33 (Pa), (h) out-of-plane electric field E3 (V/m), (i) in-plane electric
field E1 (V/m), (j) out-of-plane electric displacement D3 (C/m2) and (k) in-plane electric displacement D1 (C/m2).
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Case 3:
Dþ
ðx1; x2Þ ¼ D�ðx1; x2Þ ¼ D0 sin
px1
a

� 

sin

px2
b

� 

ðD0 ¼ 1� 10�6 C=m2Þ



Xþ

/þ

 σ

Fig. 2 (continued)
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ðx1; x2Þ ¼ Y þðx1; x2Þ ¼ Zþðx1; x2Þ ¼ X�ðx1; x2Þ ¼ Y �ðx1; x2Þ ¼ Z�ðx1; x2Þ ¼ 0

Case 4:
ðx1; x2Þ ¼ /0 sin
px1
a

� 

sin

px2
b

� 

ð/0 ¼ 1 VÞ



X

Fig. 3. Va

(m), (b) tr

(f) out-of-

field E1 (V
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þðx1; x2Þ ¼ Y þðx1; x2Þ ¼ Zþðx1; x2Þ ¼ X�ðx1; x2Þ ¼ Y �ðx1; x2Þ ¼ Z�ðx1; x2Þ ¼ /�ðx1; x2Þ ¼ 0

The variation of displacements, u1 and u3, electric potential, /, stresses, r11, r12, r31 and r33, electric

fields, E3 and E1, electric displacements, D3 and D1, as a function of the plate thickness coordinate x3, at a
riation of physical quantities with coordinate x3 at a location (x1=a ¼ 1=4, x2=b ¼ 1=4) for case 2: (a) in-plane displacement u1
ansverse displacement u3 (m), (c) electric potential / (V), (d) in-plane normal stress r11 (Pa), (e) in-plane shear stress r12 (Pa),
plane shear stress r31 (Pa), (g) out-of-plane normal stress r33 (Pa), (h) out-of-plane electric field E3 (V/m), (i) in-plane electric
/m), (j) out-of-plane electric displacement D3 (C/m2) and (k) in-plane electric displacement D1 (C/m2).
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chosen field point (x1=a ¼ 1=4, x2=b ¼ 1=4), are shown in Figs. 2–5, respectively for cases 1–4. In these
figures, the material property gradient index a is taken for five values: )1, )0.5, 0, 0.5, 1. The displacement
u2, stresses r22 and r32, electric field E2, electric displacement D2 are not depicted since their distributions
along the plate thickness direction are similar to those of u1, r11, r31, E1 and D1, respectively, due to the
symmetry of the problem. From these figures following observations can be made:



Fig. 4. Variation of physical quantities with coordinate x3 at a location (x1=a ¼ 1=4, x2=b ¼ 1=4) for case 3: (a) in-plane displacement u1
(m), (b) transverse displacement u3 (m), (c) electric potential / (V), (d) in-plane normal stress r11 (Pa), (e) in-plane shear stress r12 (Pa),
(f) out-of-plane shear stress r31 (Pa), (g) out-of-plane normal stress r33 (Pa), (h) out-of-plane electric field E3 (V/m), (i) in-plane electric
field E1 (V/m), (j) out-of-plane electric displacement D3 (C/m2) and (k) in-plane electric displacement D1 (C/m2).
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(1) For pure mechanical loading (cases 1 and 2), it can be found from Figs. 2 and 3 that transverse

displacement u3 demonstrates essentially uniform distribution along the plate thickness direction, while
in-plane displacements, u1 and u2, and out-of-plane electric field, E3, show linear variations across the



Fig. 4 (continued)
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thickness of the plate. Furthermore, out-of-plane stresses, r31, r32 and r33, in-plane electric fields, E1 and E2,
and electric displacements D1, D2 and D3 exhibit polynomial distributions. In contrast to the case of a
homogeneous piezoelectric material (when a ¼ 0) where in-plane stresses r11, r22 and r12 are linear dis-
tribution over the thickness, these in-plane stress components are varied nonlinearly along the thickness

direction for functionally gradient materials (when a 6¼ 0).
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(2) For pure electric loading (cases 3 and 4), several characteristics different from the cases of pure

mechanical loading (cases 1 and 2) can be seen from Figs. 4 and 5. Firstly, transverse displacement u3 is no
longer uniform across the plate thickness. Secondly, in-plane displacements, u1 and u2, and out-of-plane
Fig. 5. Variation of physical quantities with coordinate x3 at a location (x1=a ¼ 1=4, x2=b ¼ 1=4) for case 4: (a) in-plane displacement u1
(m), (b) transverse displacement u3 (m), (c) electric potential / (V), (d) in-plane normal stress r11 (Pa), (e) in-plane shear stress r12 (Pa),
(f) out-of-plane shear stress r31 (Pa), (g) out-of-plane normal stress r33 (Pa), (h) out-of-plane electric field E3 (V/m), (i) in-plane electric
field E1 (V/m), (j) out-of-plane electric displacement D3 (C/m2) and (k) in-plane electric displacement D1 (C/m2).
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electric field, E3, become nonlinear distributions over the thickness for functionally gradient materials
(a 6¼ 0) as compared to a linear distribution for a homogeneous piezoelectric material (a ¼ 0). Finally, it
is interesting to note that for different functionally gradient index a, electric displacements D1, D2 (similar
to D1 and not depicted for brevity) and D3 take almost the same values in case 3, while they have large
differences in case 4.
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(3) For all four cases of loading considered here, out-of-plane stresses (r13, r23 and r33) are negligible
compared to in-plane stresses (r11 and r22), which constitutes a basic assumption in most classical plate
theories. Moreover, in-plane electric fields (E1 and E2) are also negligible compared to out-of-plane electric
field (E3).
Above observations may be useful for establishing a simplified two-dimensional FGPM plate theory.

For example, the constant distribution of transverse displacement and the linear variation of in-plane

displacements and the out-of-plane electric field, across the plate thickness are good approximations for the

FGPM plate under pure mechanical loading, but these assumptions may be invalid for the case of pure

electric loading or coupling mechanical-electric loading. This means that more exact assumptions should be

made when a simplified two-dimensional FGPM plate theory is constructed, applicable to general cases

with both the mechanical and electric loading.
5. Concluding remarks

An exact three-dimensional solution is obtained for a FGPM rectangular plate simply supported and

grounded along its four edges by means of the state space approach. The mechanical and electric properties
of the material were assumed to have the same exponent-law dependence on the thickness-coordinate of the

plate. The obtained solution is valid for arbitrary mechanical and electric loads applied on the upper and

lower surfaces of the plate and can play as a benchmark result when establishing simplified FGPM plate

theories or assessing approximate computational models for FGPM plates.
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