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Abstract

An exact three-dimensional analysis is presented for a functionally gradient piezoelectric material rectangular plate
that is simply supported and grounded along its four edges. The state equations of the functionally gradient piezo-
electric material are developed based on the state space approach. Assuming that the mechanical and electric properties
of the material have the same exponent-law dependence on the thickness-coordinate, we obtain an exact three-
dimensional solution of the coupling electroelastic fields in the plate under mechanical, and electric loading on the upper
and lower surfaces of the plate. The influences of the different functionally gradient material properties on the structural
response of the plate to the mechanical and electric stimuli are then studied through examples.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials have been widely used as actuators and sensors in smart and adaptive systems due
to their intrinsic coupling of mechanical and electric fields (Gandhi and Thompson, 1992; Rao and Sunar,
1994). In order to achieve large deformation, piezoelectric actuators are often constructed as bimorph or
stacked form, by bonding together two piezoelectric ceramic sheets in strip or plate forms. While these
designs can provide large displacement, they have great disadvantages. The bonding of two different
piezoelectric materials or identical piezoelectric materials with different poling directions will cause severe
interfacial stress concentration, and trigger the initiation and propagation of micro-cracks near the inter-
face which may lead to failure of the devices. Such drawbacks reduce the reliability and life span of
piezoelectric devices and limit their applications.
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In order to overcome the drawbacks of conventional piezoelectric bimorphs, a new kind of piezoelectric
materials, named functionally gradient piezoelectric materials (FGPMs), has been developed (Zhu and
Meng, 1995; Wu et al., 1996; Shelley et al., 1999). FGPM is a kind of piezoelectric material with material
composition and properties varying continuously along certain directions. The piezoelectric devices can be
entirely made of FGPM or use FGPM as a transit interlayer between different piezoelectric materials. The
advantage of this new kind of materials is that no discernible internal boundaries exist and failures from
interfacial stress concentrations developed in conventional bimorphs can be avoided. FGPM actuators can
thus produce large displacements while minimizing the internal stress concentrations, which will greatly
improve the reliability and life of piezoelectric actuators. Nowadays, advancement of modern materials
processing technology has enabled the fabrication of materials with arbitrary compositional gradient in a
controlled fashion. The relationship between the material compositional gradient and the electromechanical
responses of FGPM structures is very important in the design of FGPM devices. This research subject is so
new that only a few results can be found in the literature. Most of the available results on the structural
analysis of FGPM plate were based on a laminated structure scheme by which the FGPM plate was ap-
proximately modeled as a laminated structure. For example, this scheme was employed by Liu and Tani
(1994) to study the wave propagation in FGPM plates, by Chen and Ding (2002) to analyze the free
vibration of FGPM rectangular plates. Other related works include: Lim and He (2001) obtained an exact
solution of a compositionally graded piezoelectric layer under uniform stretch, bending and twisting;
Reddy and Cheng (2001) obtained a three-dimensional solution of smart functionally gradient plate; Li and
Weng (2002a,b), Hu et al. (2002), Jin and Zhong (2002) studied the problems of an antiplane crack in
functionally gradient piezoelectric materials.

The objective of this work is to present an exact solution of a simply supported functionally gradient
piezoelectric rectangular plate based on three-dimensional electroelasticity theory. The obtained exact
solution could serve as a benchmark result to assess other approximate methodologies or as a basis for
establishing simplified FGPM plate theories.

2. Formulation

Consider a FGPM rectangular plate of uniform thickness /4, as shown in Fig. 1. Introduce a Cartesian
coordinate system {x;} (i = 1,2, 3) such that the bottom and top surfaces of the undeformed plate lie in the
plane x; = 0 and x; = A. The lengths of the edges of the plate in x;- and x,-direction are respectively denoted
by a and 4. Throughout the paper, the Einsteinian summation convention over repeated indices of tensor
components is used, with Latin indices ranging from 1 to 3 while Greek indices over 1 and 2.

In the absence of body forces and electric charge density, the field equations of elastic equilibrium and
Gauss’ law of electrostatics are (Tiersten, 1969; Maugin, 1988)

O-ij,jzo Dl‘_j:O (1)

Fig. 1. A schematic of the rectangular plate.
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where g;; is the stress tensor, D; the electric displacement vector, a comma denotes partial differentiation
with respect to the coordinate x;.

The strain ¢; and the electric field E; are related to the elastic displacements u; and the electric potential ¢
through the following relations:

ey = 5 + ;) Ei=—¢; (2)
The constitutive relations of FGPM are
0j; = Cijuiek — €xijEi D; = eyen + AuEr (3)

where c¢;u, ess, Ai are the elastic stiffness tensor, the piezoelectric tensor and the dielectric tensor, with the
interchange symmetries c;ji; = Cjius = Cijic = Cij» €xij = €xji» ik = - Unlike in a homogeneous piezoelectric
material, ¢, ex, 4% are now functions of the coordinates x; (i = 1,2, 3). In most real cases, the material
property parameters are varied continuously only in one direction. In the present study, we consider the
material properties having the following exponential distributions

cyur = @ ey = e gy = el (4)

where ¢}, €}, and 29 are the values at the plane x; = 0, « is the material property gradient index which can
be determined by the values of the material properties at the planes, x; = 0 and x; = A, i.e.

— 1 0 1 h 0 _ 14 9k 0
o=1In it — In Ci = Inej, —Ine,, =Ini; —Ini, (5)

The assumption that the material properties vary exponentially with spatial position is not only simple for
mathematical treatment, it also provides some essential features of functionally gradient materials.
Therefore, it was employed by many researchers to model the elastic or thermoelastic behaviors of func-
tionally gradient material (e.g., Erdogan, 1985; Delale and Erdogan, 1988; Noda and Jin, 1993; Gu and
Asaro, 1997; among others).

Next we will consider an orthotropic functionally gradient material, for which the nonzero components
of the elastic stiffness tensor, the piezoelectric tensor and the dielectric tensor are ¢y111, €222, €3333, C1122, C11335
C2233, C2323, C1313, C1212, €311, €322, €333, €113, €223, /111, /122, }v33. FOHOWiIlg the process of state space approach
used in piezoelectricity (Lee and Jiang, 1996; Ding et al., 1999; Cheng et al., 2000), the following relations in
matrix form can be obtained from (1)-(3):

o[- [8 3102
SRNIE
where 0, =0/0x; (i =1,2,3), and
O=[u, w o3 Di|' T=[o3 o5 us ¢] (8)
A=[D; D' T=[oy on opnl] (9)

The operator matrices A, B, C, D contain the in-plane differential operators 9, and 0,, and depend on x;
only through the material moduli:

i3 0 -0 —k110
B 0 Crpy  —0s —k1205
A=l o S o 0 (10)

—k1d —knd 0 k20 + kn0;
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[ _k3]a% - 0121235 k30,0, —k40, —ks0
kg0, 0 —Cp120? — k30?7 —kO —k70
B— 80102 12120, 330, 602 702 (11)
— k40 —ke0s koZsz  koesss
L —ks0 —k70, koesss  —kocszzs
c_ [kn 0 0 —ky0 (12)
L 0 ko 0 —k»no

k3104 k320 ks ks
D= k3201 k330» ke k7 (13)
ciod, cpd 00

where
1 €113 €223
ky = ————5— > ky =—— ki = ——
C3333433 1 €333 C1313 2323
2 2
e e
_ ‘s _ Co3
ko1 = —=+ /i ko = ==+
C1313 C2323

2 2
k31 = ciinn — ko(c 33433 + 2cnimesiiesss — €3,63333)
k3 = ciim — k0(0113302233ﬂ33 + c1133€320€333 + C2233€311€333 — C3333€311€322)
ks = o — ko(Coy33233 + 2Cm33e3messs — €39yC3333)
33 = €222 0(C33433 2233€322€333 3223333
ky = k0(011337~33 + 63116333) ks = k0(6’1133€333 - 033336311)
ks = ko (62233)»33 + 63226333) k1 =k (022336333 - 033336322)

kg = k4capzz + ksesn — ciiz2 — cion

For a rectangular plate that is simply supported and grounded on all four edges, the edge conditions are
given by

0'11:M2:M3:¢:0 atxleanda

on=u=u3;=¢=0 atx,=0and b (14)
Boundary conditions at the top and bottom surfaces are
at x3 = 0 (bottom surface):
13 =X (x1,x2) 03 =Y (x1,x2) 033 = Z 7 (x1,x2) (15)

D3 = D_()Cl,)Q) (OI‘ b= ¢_(X1,XZ))
and at x; = & (top surface):

o3 =X"(x1,x,) 023 = Y (x1,x,) o33 = Z"(x1,x2)

D3 = D+(X1,X2) (OI' D = ¢+(X1,X2))



3. Solution

The state variables that satisfy the boundary condition (14) can be assumed as

[ U, (x3) cos (mmq ) sin (_nnxz
a b
U ./ mmx nTX,
I/l2 0 00 Vm,,(x3) Sin (T) COS ( b
r[ = =
033 ; ; Ca(x3/h)Zm,, (X3> sin (mﬂ:xl ) sin (ﬂ
Ds a
e“(xz/h>Dmn(x3) sin (mﬂ:xl ) sin (n
L a
ea(x}/h)an(x3) cos (mle ) sin (L
Zl3 o o e*(x3/h) Y, (X3) sin (mnxl ) (ﬂ
SR »> (NN
u . (MTX]\ . [(NTX;
3 m=1 n=1 W,,,n(xg)sm( p )sm (T
¢
D, (x3)s (mmq ) sin (nnxz
Substituting (17) and (18) into (6), we obtain the following matrix equation
oM
== Kmann
6)(3
where
Mi’ﬂﬂ = [ Umn I/mn Zmn Dmn Xi’ﬂﬂ Ymn Wmn ¢mn ]T
and
_ Kk
Kmn - [KZHI Krznn:|
with K7, KJ”, K7" and K}" being given as
00 0 0] % o0 0 0
h
0 0 O 0 o
mn mn O . 0 O
K"=10 o —% 0 K" = h
” 0 0 0 O
_0 0 0 - nl L 0 0 0 0
ro1 mmn mmn
0 0 T —k, —
Ci313 a
1 nm nm
0 _ —— —k0, —
K" = €2323 b 2
mmn nrw
— — 0 0
a b
mm nm mm\ 2 nm\ 2
I 0 K (5) -k (5) ]
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mm\ 2 nm\ 2 mm nm mmn mm ]
0 0 0 0 0
kzl( ) +61212(7) —kg — —ky—  —ks—
a b a b a a
2 2
K= mu ni & mn iy nn kO nm _kOE
mn 8 B 1212 3\ b 7
K" = a a (22)
) o M7 o 7 20 0
ks a0 ks B 233k es3ko
mn nm
0 0 0 0
kS a k7 ? 633k0 _C33k()
with
0 0
kO = _r KO — fu3 ey — 5223
T 0 0 \2 =0 2=7%
333333 + (€333) 1313 2323
0 2 0 2
e e A
ko = ( “3) +} ko, = ( ?)23) +A22
01313 303

0 0 07/ .0 2 0 0 0 0 \2 0
k3 = ¢y — kol(cli33) 433 + 26133631 €335 — (€311) Caa3)

0 _ 0 0,0 0 0 0 0 0 0 0 0 0 0 0
K3y = i1 — ko (€11330033 433 T €1133€322€333 T €233€311€333 — C3333€311€322)

0 _ 0 0170 1240 0 0 0 0 \2.0
k33 = Cry — ko (Co33) 233 + 2C033€550€355 — (€320) €333

0_ 70,0 30 0 0 0 0 0
ky = ky(€l133/33 + €311€333) k = ko (C1133e333 C3333€311)
0_ 70,0 10 0 0 0_ 70,0 0 0 0
ks = ko (33433 + €32€333) ky = ky(cy33€333 — C3333€300)

kg = kgcgm + kgegzz - c(1)122 - 0(1)212
The solution to Eq. (19) can be written as (Gantmacher, 1960)
M, (x3) = T(x3)M,,,(0) (23)

where T(x3) = e is called a transfer matrix, which can be further expanded into a matrix polynomial
from the Cayley—-Hamilton theorem, as follows:

T(X3 Konxs __ Zap x3 (24)

Assuming that the 8§ x8 matrix K,,, takes distinct eigenvalues #,,...,#s, which is valid for most cases of
anisotropic materials, we have

& = Z a, () (i=1,...,8) (25)

(25) forms a set of eight linear algebraic equations for eight unknown coefficients a,(x3;), p=0,1,...,7.
Once these coefficients are obtained, the transfer matrix T(x;) can readily be determined from Eq. (24).
Then, from (23), we can get

M, (h) = T(h)M,,(0) (26)
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or

—_ — — — — — — —

—_ — — — — — — —

~ Y~ ~

~ Y~ ~

N~ o~ T/~~~ T T/

R T S e N
f § F Fof 3¢
=

5 X N Q x>~ K =e

The mechanical and electric loads on the top and bottom surfaces of the plate (see boundary conditions

(15) and (16)) can be further expanded as

\) ) \)
© N =
N aQ &
N— SN— S~—
r 1
N N ~ N N
S 5 5 B8 3B
N TN/~ /N
r 1 T 1 o o o o o1
N N o~ N N N /o~ glo Blo Sle Ble EBlo
S S < < g ol TP I I = = S S S
nbnbnibnbnb ElogloBlog|og|e — ~— " ~— ~—
< < = = = = = < = = [=} @ = =1 =}
S 7 17} @» 17} o 7 @» @» = . . — .
T~ T I mamamamama
= vy 2 = = = "y 2 = =
Bls Bls B|s €| E|s Blog|sElcElsE|s NS g g g
s 5|S 8|7 8l 817 8| E|I®E|Ts8l s 2 2 5 5 %
~— o " N~ ~— " L —— Q o= — — =
14 »n ] 17} n 7] 17}
o =] g .g g o) (=] g = = — — — = -~
'§ 1§ 1§ 1§ 1§ 4% 4% +5 rE 4% = - - = -
~ >~ N Q % ~ N Q% 2 R 2 2 X
L l L 1 | 7 7 | |
_ _ M 0~ N QA ®
[v = =4 (=}
wzm mzm 2 a/a[Uu/a/
(=] =2 (=] (=]
I I = _
T 1 B
=TS S S S R s e
= = £ = & R R R R R I
E R & & K& EREEE .
, : , : , LRk NN
M o~ N QB <~ N QB NN QS
L 1 e — e — |

where
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sin (5 )|

mmx; NnTX,
(x1,x,) sin ( ) cos ( )dxl dx,

XI,XQ COS(

e
w1 L[
|7
I

Y+
mn 4 mmnx nmx
g;rlrn - /O (x1,x2 sm( ; ])sm(Tz)dxldxz (31)
o / (x1,x>) sin (mnxl ) sin (m;)xz )dx1 dx,
/ / (o1, %0 s1n(mle)sin(@>dx1dx2

Substituting (17) and (18) into boundary conditions (15) and (16), with (28) and (29) being considered,
we have
Xun(0) =X Y. (0)=Y" Zw(0) =2~

mn mn mn 32
Dmn(o) = D7 (Or @mn(o) = djr;n) ( )

mn

KXom(h) = X, Yon(h) =Y, Zw(h) =e7Z, (33)
D,,(h) =e™*D} (or @,,(h) = &' )

mn

Substituting (32) and (33) into (27), we can solve these eight algebraic equations for eight unknowns,
Unn(0), Vn(0), W (0), @,,(0), Upn(B), Vi (B), Wyin(h), @, (h). Hence, all the components of M,,,(0) are ob-
tained. Egs. (17), (18) and (23) can then be used to calculate exactly the coupling electroelastic field in the plate.

4. Numerical examples

In this section numerical study of FGPM square plate (¢ = 5 =1 m, 2 = 0.1 m), which is simply sup-
ported and grounded on its four lateral edges, will be made based on the above exact solution. The material
chosen for the study is PZT-4 that has the material properties at x; = 0, as follows (Cheng et al., 2000):

A =, =139 GPa, Sy, = 115 GPa, 0, =77.8 GPa, ¢4; = cbysy = 74.3 GPa,
Sy = Ay =256 GPa, %, =30.6 GPa, %, =¢), =52 C/m?, &, =151 C/m?
ey =€y =127 C/m?, A, =3, = 1.306 x 10* pF/m, 23, = 1.151 x 10* pF/m

Numerical results are presented for four cases of sinusoidal loading for which only one term solution is
needed (m = n = 1). The four cases considered here are:

Case 1.
. _ ™| X _
ZT(x1,x) = Zosm( p; )sm( 5 ) (Zy =1 Pa)
Y+(XI,X2) :X+(X1,XQ) = Z (XI,XZ) = (X],Xz) :Xf(xl,xz) :D+(X17.X2) :Di(xl,)Q) = 0

Case 2:

Z"(x1,x2) = —Zy sin (%) sin (%) (Zy =1 Pa)

Y+(X1,X2) :X+(x1,x2) = Zf(xl,xz) = Yf(xl,xg) :Xf(xl,xz) = ¢+(X17X2) = (]5_()61,)62) =0
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8, 0.2

_UO 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1 "0 0.1 02 03 04 05 06 07 0.8 09 1
(e) zlh ® 7/ h

Fig. 2. Variation of physical quantities with coordinate x; at a location (x; /a = 1/4, x,/b = 1/4) for case 1: (a) in-plane displacement u,
(m), (b) transverse displacement u3 (m), (c) electric potential ¢ (V), (d) in-plane normal stress a1 (Pa), (¢) in-plane shear stress o}, (Pa),
(f) out-of-plane shear stress o3, (Pa), (g) out-of-plane normal stress o33 (Pa), (h) out-of-plane electric field £5 (V/m), (i) in-plane electric
field E; (V/m), (j) out-of-plane electric displacement D; (C/m?) and (k) in-plane electric displacement D; (C/m?).

Case 3:
X

D+(X1,.X2) = Df(xl,xz) = D() sin (@) Sin <72) (D(] =1x 1076 C/mz)

a
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Fig. 2 (continued)

0.2 0.3 04 05 0.6 0.7 0.8 09 1

X+(.)C1,XQ) = Y+<X1,)C2) = Z*(xl,xz) =X7(x1,x2) = Yf(xl,xz) :Zi(xl,xZ) = 0

Case 4.

¢+(x17x2) -

X

@, sin (%) sin (

) @=1V)
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X7 (x1,x2) = YT (x1,x0) = Z7(x1,%0) =X (x1,x0) =Y (x1,x02) =Z (x1,%2) = ¢ (x1,x2) =0

The variation of displacements, u; and us, electric potential, ¢, stresses, a1, 012, 31 and o33, electric
fields, E5 and E), electric displacements, D3 and D, as a function of the plate thickness coordinate x;, at a

-2.2

-2.4

-2.6 -

40 0.1 02 03 04 05 06 0.7 0.8 09 1 0O 0.1 02 03 04 05 06 0.7 0.8 09 1

() zlh (b) zlh

1x10 20

7
0 01 02 03 04 05 06 07 0.8 0.9 1 0 0.1 02 03 04 05 06 0.7 0.8 09 1
(© zlh (C) zlh

-1

A —— 7
0 01 02 03 0.4 05 06 07 08 09 1 0 01 02 03 04 05 06 07 0.8 09 1
(e) zlh ® zlh

Fig. 3. Variation of physical quantities with coordinate x; at a location (x; /a = 1/4, x,/b = 1/4) for case 2: (a) in-plane displacement u,
(m), (b) transverse displacement u3 (m), (c) electric potential ¢ (V), (d) in-plane normal stress a1, (Pa), (¢) in-plane shear stress g, (Pa),
(f) out-of-plane shear stress o3, (Pa), (g) out-of-plane normal stress o33 (Pa), (h) out-of-plane electric field £5 (V/m), (i) in-plane electric
field £, (V/m), (j) out-of-plane electric displacement D; (C/m?) and (k) in-plane electric displacement D, (C/m?).
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Fig. 3 (continued)

chosen field point (x;/a = 1/4, x,/b = 1/4), are shown in Figs. 2-5, respectively for cases 1-4. In these
figures, the material property gradient index « is taken for five values: —1, —0.5, 0, 0.5, 1. The displacement
u,, stresses g, and o3, electric field E,, electric displacement D, are not depicted since their distributions
along the plate thickness direction are similar to those of u;, o1, 031, E; and D, respectively, due to the
symmetry of the problem. From these figures following observations can be made:
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Fig. 4. Variation of physical quantities with coordinate x; at a location (x; /a = 1/4, x,/b = 1/4) for case 3: (a) in-plane displacement u,
(m), (b) transverse displacement u3 (m), (c) electric potential ¢ (V), (d) in-plane normal stress a1, (Pa), (¢) in-plane shear stress o}, (Pa),
(f) out-of-plane shear stress o3, (Pa), (g) out-of-plane normal stress o33 (Pa), (h) out-of-plane electric field £5 (V/m), (i) in-plane electric
field £, (V/m), (j) out-of-plane electric displacement D; (C/m?) and (k) in-plane electric displacement D, (C/m?).

(1) For pure mechanical loading (cases 1 and 2), it can be found from Figs. 2 and 3 that transverse
displacement u3 demonstrates essentially uniform distribution along the plate thickness direction, while
in-plane displacements, u; and u,, and out-of-plane electric field, E3, show linear variations across the
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Fig. 4 (continued)

thickness of the plate. Furthermore, out-of-plane stresses, g3, 03, and 33, in-plane electric fields, E£; and E,,
and electric displacements D;, D, and D; exhibit polynomial distributions. In contrast to the case of a
homogeneous piezoelectric material (when o = 0) where in-plane stresses oy, g2, and o, are linear dis-
tribution over the thickness, these in-plane stress components are varied nonlinearly along the thickness
direction for functionally gradient materials (when o # 0).
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(2) For pure electric loading (cases 3 and 4), several characteristics different from the cases of pure
mechanical loading (cases 1 and 2) can be seen from Figs. 4 and 5. Firstly, transverse displacement u3 is no
longer uniform across the plate thickness. Secondly, in-plane displacements, u; and u,, and out-of-plane
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Fig. 5. Variation of physical quantities with coordinate x; at a location (x; /a = 1/4, x,/b = 1/4) for case 4: (a) in-plane displacement u,
(m), (b) transverse displacement u3 (m), (c) electric potential ¢ (V), (d) in-plane normal stress a1, (Pa), (¢) in-plane shear stress g, (Pa),
(f) out-of-plane shear stress o3, (Pa), (g) out-of-plane normal stress o33 (Pa), (h) out-of-plane electric field £5 (V/m), (i) in-plane electric
field £, (V/m), (j) out-of-plane electric displacement D; (C/m?) and (k) in-plane electric displacement D, (C/m?).
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electric field, E3, become nonlinear distributions over the thickness for functionally gradient materials
(a # 0) as compared to a linear distribution for a homogeneous piezoelectric material (« = 0). Finally, it
is interesting to note that for different functionally gradient index o, electric displacements Dy, D, (similar
to D, and not depicted for brevity) and D; take almost the same values in case 3, while they have large
differences in case 4.
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(3) For all four cases of loading considered here, out-of-plane stresses (o3, 23 and a33) are negligible
compared to in-plane stresses (o;; and oy), which constitutes a basic assumption in most classical plate
theories. Moreover, in-plane electric fields (£, and E,) are also negligible compared to out-of-plane electric
field (E3).

Above observations may be useful for establishing a simplified two-dimensional FGPM plate theory.
For example, the constant distribution of transverse displacement and the linear variation of in-plane
displacements and the out-of-plane electric field, across the plate thickness are good approximations for the
FGPM plate under pure mechanical loading, but these assumptions may be invalid for the case of pure
electric loading or coupling mechanical-electric loading. This means that more exact assumptions should be
made when a simplified two-dimensional FGPM plate theory is constructed, applicable to general cases
with both the mechanical and electric loading.

5. Concluding remarks

An exact three-dimensional solution is obtained for a FGPM rectangular plate simply supported and
grounded along its four edges by means of the state space approach. The mechanical and electric properties
of the material were assumed to have the same exponent-law dependence on the thickness-coordinate of the
plate. The obtained solution is valid for arbitrary mechanical and electric loads applied on the upper and
lower surfaces of the plate and can play as a benchmark result when establishing simplified FGPM plate
theories or assessing approximate computational models for FGPM plates.
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